28 research outputs found

    MEPSA: Minimum energy pathway analysis for energy landscapes

    Get PDF
    From conformational studies to atomistic descriptions of enzymatic reactions, potential and free energy landscapes can be used to describe biomolecular systems in detail. However, extracting the relevant data of complex 3D energy surfaces can sometimes be laborious. In this article, we present MEPSA (Minimum Energy Path Surface Analysis), a cross-platform user friendly tool for the analysis of energy landscapes from a transition state theory perspective. Some of its most relevant features are: identification of all the barriers and minima of the landscape at once, description of maxima edge profiles, detection of the lowest energy path connecting two minima and generation of transition state theory diagrams along these paths. In addition to a built-in plotting system, MEPSA can save most of the generated data into easily parseable text files, allowing more versatile uses of MEPSA's output such as the generation of molecular dynamics restraints from a calculated path.Grant IPT2011-0964-900000 (Government of Spain).Peer Reviewe

    Epileptogenic Zone Localization With 18FDG PET Using a New Dynamic Parametric Analysis

    Get PDF
    Introduction: [18F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) is part of the regular preoperative work-up in medically refractory epilepsy. As a complement to visual evaluation of PET, statistical parametric maps can help in the detection of the epileptogenic zone (EZ). However, software packages currently available are time-consuming and little intuitive for physicians. We develop a user-friendly software (referred as PET-analysis) for EZ localization in PET studies that allows dynamic real-time statistical parametric analysis. To evaluate its performance, the outcome of PET-analysis was compared with the results obtained by visual assessment and Statistical Parametric Mapping (SPM).Methods: Thirty patients with medically refractory epilepsy who underwent presurgical 18F-FDG PET with good post-operative outcomes were included. The 18F-FDG PET studies were evaluated by visual assessment, with SPM8 and PET-analysis. In SPM, parametric T-maps were thresholded at corrected p < 0.05 and cluster size k = 50 and at uncorrected p < 0.001 and k = 100 (the most used parameters in the literature). Since PET-analysis rapidly processes different threshold combinations, T-maps were thresholded with multiple p-value and different clusters sizes. The presurgical EZ identified by visual assessment, SPM and PET-analysis was compared to the confirmed EZ according to post-surgical follow-up.Results: PET-analysis obtained 66.7% (20/30) of correctly localizing studies, comparable to the 70.0% (21/30) achieved by visual assessment and significantly higher (p < 0.05) than that obtained with the SPM threshold p < 0.001/k = 100, of 36.7% (11/30). Only one study was positive, albeit non-localizing, with the SPM threshold corrected p < 0.05/k = 50. Concordance was substantial for PET-analysis (κ = 0.643) and visual interpretation (κ = 0.622), being fair for SPM (κ = 0.242).Conclusion: Compared to SPM with the fixed standard parameters, PET-analysis may be superior in EZ localization with its easy and rapid processing of different threshold combinations. The results of this initial proof-of-concept study validate the clinical use of PET-analysis as a robust objective complementary tool to visual assessment for EZ localization

    Clinical role of subtraction ictal SPECT coregistered to MR Imaging and 18F-FDG PET in pediatric epilepsy

    Get PDF
    A precise assessment of the drug-resistant epileptic pediatric population for surgical candidacy is often challenging, and to date there are no evidence-based guidelines for presurgical identification of the epileptogenic zone. To evaluate the usefulness of radionuclide imaging techniques for presurgical evaluation of epileptic pediatric patients, we compared the results of video-electroencephalography (EEG), brain MR imaging, interictal SPECT, ictal SPECT, subtraction ictal SPECT coregistered to MR imaging (SISCOM), and interictal PET with (18)F-FDG. METHODS: Fifty-four children with drug-resistant epilepsy who had undergone video-EEG monitoring, brain MR imaging, interictal and ictal brain perfusion SPECT, SISCOM, and (18)F-FDG PET were included in this study. All abnormal findings revealed by these neuroimaging techniques were compared with the presumed location of the epileptogenic zone (PEZ) as determined by video-EEG and clinical data. The proportion of localizing studies for each technique was statistically compared. In the 18 patients who underwent resective brain surgery, neuroimaging results were compared with histopathology results and surgical outcome. RESULTS: SISCOM and (18)F-FDG PET concordance with the PEZ was significantly higher than MR imaging (P < 0.05). MR imaging showed localizing results in 21 of 54 cases (39%), SISCOM in 36 of 54 cases (67%), and (18)F-FDG PET in 31 of 54 cases (57%). If we consider SISCOM and (18)F-FDG PET results together, nuclear medicine imaging techniques showed coinciding video-EEG results in 76% of patients (41/54). In those cases in which MR imaging failed to identify any epileptogenic lesion (61% [33/54]), SISCOM or (18)F-FDG PET findings matched PEZ in 67% (22/33) of cases. CONCLUSION: SISCOM and (18)F-FDG PET provide complementary presurgical information that matched video-EEG results and clinical data in three fourths of our sample. SISCOM was particularly useful in those cases in which MR imaging findings were abnormal but no epileptogenic lesion was identified. Radionuclide imaging techniques are both useful and reliable, extending the possibility of surgical treatment to patients who may have been discouraged without a nuclear medicine approach

    Epileptogenic zone localization with (18)FDG PET using a new dynamic parametric analysis

    Get PDF
    Introduction: [18F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) is part of the regular preoperative work-up in medically refractory epilepsy. As a complement to visual evaluation of PET, statistical parametric maps can help in the detection of the epileptogenic zone (EZ). However, software packages currently available are time-consuming and little intuitive for physicians. We develop a user-friendly software (referred as PET-analysis) for EZ localization in PET studies that allows dynamic real-time statistical parametric analysis. To evaluate its performance, the outcome of PET-analysis was compared with the results obtained by visual assessment and Statistical Parametric Mapping (SPM). Methods: Thirty patients with medically refractory epilepsy who underwent presurgical 18F-FDG PET with good post-operative outcomes were included. The 18F-FDG PET studies were evaluated by visual assessment, with SPM8 and PET-analysis. In SPM, parametric T-maps were thresholded at corrected p < 0.05 and cluster size k = 50 and at uncorrected p < 0.001 and k = 100 (the most used parameters in the literature). Since PET-analysis rapidly processes different threshold combinations, T-maps were thresholded with multiple p-value and different clusters sizes. The presurgical EZ identified by visual assessment, SPM and PET-analysis was compared to the confirmed EZ according to post-surgical follow-up. Results: PET-analysis obtained 66.7% (20/30) of correctly localizing studies, comparable to the 70.0% (21/30) achieved by visual assessment and significantly higher (p < 0.05) than that obtained with the SPM threshold p < 0.001/k = 100, of 36.7% (11/30). Only one study was positive, albeit non-localizing, with the SPM threshold corrected p < 0.05/k = 50. Concordance was substantial for PET-analysis (κ = 0.643) and visual interpretation (κ = 0.622), being fair for SPM (κ = 0.242). Conclusion: Compared to SPM with the fixed standard parameters, PET-analysis may be superior in EZ localization with its easy and rapid processing of different threshold combinations. The results of this initial proof-of-concept study validate the clinical use of PET-analysis as a robust objective complementary tool to visual assessment for EZ localization

    Ibrutinib in Combination With Rituximab for Indolent Clinical Forms of Mantle Cell Lymphoma (IMCL-2015): A Multicenter, Open-Label, Single-Arm, Phase II Trial

    Get PDF
    PURPOSE The need for an individualized management of indolent clinical forms in mantle cell lymphoma (MCL) is increasingly recognized. We hypothesized that a tailored treatment with ibrutinib in combination with rituximab (IR) could obtain significant responses in these patients. METHODS This is a multicenter single-arm, open-label, phase II study with a two-stage design conducted in 12 Spanish GELTAMO sites (ClinicalTrials.gov identifier: NCT02682641). Previously untreated MCL patients with indolent clinical forms defined by the following criteria were eligible: no disease-related symptoms, nonblastoid variants, Ki-67 < 30%, and largest tumor diameter <= 3 cm. Both leukemic non-nodal and nodal subtypes were recruited. Patients received ibrutinib 560 mg once daily and a total of eight doses of rituximab 375 mg/m(2). Ibrutinib could be discontinued after 2 years in the case of sustained undetectable minimal residual disease (MRD). The primary end point was the complete response (CR) rate achieved after 12 cycles according to Lugano criteria. RESULTS Fifty patients with MCL (male 66%; median age 65 years) were enrolled. After 12 cycles of treatment, 42 (84%; 95% CI, 74 to 94) patients had an overall response, including 40 (80%; 95% CI, 69 to 91) with CR. Moreover, undetectable MRD in peripheral blood was achieved in 87% (95% CI, 77 to 97) of cases. At 2 years, 24 of 35 evaluable patients (69%) could discontinue ibrutinib because of undetectable MRD. Four patients had disease progression; three were non-nodal MCL and carried high genomic complexity and TP53 mutations at enrollment. No unexpected toxicity was seen except one patient with severe aplastic anemia. CONCLUSION Frontline IR combination achieves a high rate of CRs and undetectable MRD in indolent clinical forms of MCL. Discontinuation seems appropriate in cases with undetectable MRD, except for TP53-mutated cases

    Epilepsy surgery in drug resistant temporal lobe epilepsy associated with neuronal antibodies

    Get PDF
    We assessed the outcome of patients with drug resistant epilepsy and neuronal antibodies who underwent epilepsy surgery. Retrospective study, information collected with a questionnaire sent to epilepsy surgery centers. Thirteen patients identified, with antibodies to GAD (8), Ma2 (2), Hu (1), LGI1 (1) or CASPR2 (1). Mean age at seizure onset: 23 years. Five patients had an encephalitic phase. Three had testicular tumors and five had autoimmune diseases. All had drug resistant temporal lobe epilepsy (median: 20 seizures/month). MRI showed unilateral temporal lobe abnormalities (mainly hippocampal sclerosis) in 9 patients, bilateral abnormalities in 3, and was normal in 1. Surgical procedures included anteromesial temporal lobectomy (10 patients), selective amygdalohippocampectomy (1), temporal pole resection (1) and radiofrequency ablation of mesial structures (1). Perivascular lymphocytic infiltrates were seen in 7/12 patients. One year outcome available in all patients, at 3 years in 9. At last visit 5/13 patients (38.5%) (with Ma2, Hu, LGI1, and 2 GAD antibodies) were in Engel's classes I or II. Epilepsy surgery may be an option for patients with drug resistant seizures associated with neuronal antibodies. Outcome seems to be worse than that expected in other etiologies, even in the presence of unilateral HS. Intracranial EEG may be required in some patients

    Procesamiento de imágenes hiperespectrales en GPUs

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 16/10/2013Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    Ajuste del planificador de Linux para procesadores con "Hyper-Threading"

    Get PDF
    En este proyecto hemos abordado la sintonización del Kernel Linux para procesadores con tecnología Hyper-Threading, centrando nuestros esfuerzos en el diseñoo y desarrollo de un planificador de procesos simbiótico. Por software simbiótico entendemos aquél que es capaz de adaptarse dinámicamente para ajustar el escenario de ejecución con los requerimientosdel sistema (ahorro de consumo, rendimiento, calidad de servicio...). Para el desarrollo de dicho planificador, al que hemos bautizado con el acrónimo de HTAS, nos hemos basado en el uso de los contadores hardware de la arquitectura IA-32. Mediante dichos contadores hemos podido detectar situaciones en las que Hyper-Threading puede comprometer el rendimiento. Nos gustaría destacar que, aunque existen diversas propuestas basadas en estudios mediante simulación,no conocemos ninguna implementación de un planificador con estas características en sistemas reales [ABSTRACT] We have addressed in this project the tuning of the Linux Kernel in Hyper-Threading-enabled processors, focusing on the design and implementation of a symbiotic process scheduler. Symbiotic software is able to be dynamically adapted to match the execution scenario and the system policy (power saving, performance, quality of service...). The symbiotic scheduler developed in this project, which we have dubbed as HTAS, is based on the employment of the IA-32 hardware performance counters, which have help us to detect possible performance bottlenecks caused by Hyper-Threading. We would like to remark that, despite being proposed by some authors in simulation studies, to the best of our knowledge any similar scheduler has been yet implemented on real systems

    NMF-mGPU: non-negative matrix factorization on multi-GPU systems

    Get PDF
    Background: In the last few years, the Non-negative Matrix Factorization (NMF) technique has gained a great interest among the Bioinformatics community, since it is able to extract interpretable parts from high-dimensional datasets. However, the computing time required to process large data matrices may become impractical, even for a parallel application running on a multiprocessors cluster. In this paper, we present NMF-mGPU, an efficient and easy-to-use implementation of the NMF algorithm that takes advantage of the high computing performance delivered by Graphics-Processing Units (GPUs). Driven by the ever-growing demands from the video-games industry, graphics cards usually provided in PCs and laptops have evolved from simple graphics-drawing platforms into high-performance programmable systems that can be used as coprocessors for linear-algebra operations. However, these devices may have a limited amount of on-board memory, which is not considered by other NMF implementations on GPU. Results: NMF-mGPU is based on CUDA (Compute Unified Device Architecture), the NVIDIA's framework for GPU computing. On devices with low memory available, large input matrices are blockwise transferred from the system's main memory to the GPU's memory, and processed accordingly. In addition, NMF-mGPU has been explicitly optimized for the different CUDA architectures. Finally, platforms with multiple GPUs can be synchronized through MPI (Message Passing Interface). In a four-GPU system, this implementation is about 120 times faster than a single conventional processor, and more than four times faster than a single GPU device (i.e., a super-linear speedup). Conclusions: Applications of GPUs in Bioinformatics are getting more and more attention due to their outstanding performance when compared to traditional processors. In addition, their relatively low price represents a highly cost-effective alternative to conventional clusters. In life sciences, this results in an excellent opportunity to facilitate the daily work of bioinformaticians that are trying to extract biological meaning out of hundreds of gigabytes of experimental information. NMF-mGPU can be used "out of the box" by researchers with little or no expertise in GPU programming in a variety of platforms, such as PCs, laptops, or high-end GPU clusters. NMF-mGPU is freely available at https://github.com/bioinfo-cnb/bionmf-gpu
    corecore